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PROJECT DESCRIPTION

A. INTRODUCTION

Typical communication satellites, Figure 1, employ traditional waveguide-base front-end
architectures due to excellent electrical performance and high reliability. However, these systems
are extremely massive and utilize large volume mostly attributed to the low-insertion loss
waveguide switch, diplexer and waveguide-packaged solid-state power amplifier. These three
components are interconnected by waveguide sections for compatibility and result in subsystems
with dimensions of 18cm x 40.6 cm x10.5 cm as shown on Figure 2. Despite the large volume
and mass, metallic waveguide has

Satellite RF Front End on a Chip been the transmission medium of

choice in space applications due to
the low-loss requirements. Its use
in communication systems has
resulted in overall system loss of
less than 2 dBs. Replacement of the
waveguide components by micro-
machined ones without substan-
tially affecting electrical perfor-
mance can lead to a breakthrough
in wireless communications [l],
[2]. Communications via satellites
. - 5 require optimum high frequency
xs . v . ; : performance, lightweight hardware,
SkBased Monolithic advanced packaging, high-density
Technobekes interconnect technology and high
. Si-.\li:mnnchhed reliability. The use of electronics in
== space poses interesting but grand
challenges. It also provides the

Figure 1: Waveguide-Based Satellite RF Front opportunity for using rcvolutionary

End concepts in circuit design, fabri

cation and implementation to achie-

ve what is considered by today’s standards as ultimate performance, minimal volume and very
low cost. Circuit optimization methods applied to existing technologies cannot meet the
specifications, but critical advancements based on new concepts at fundamental levels of circuit
design and diagnostics are needed. The capability to integrate the RF system on a single chip
while preserving electrical performance will provide a breakthrough in communications systems
for any type of wireless applications. The objectives of this effort is to attempt a revolutionary
filterdiplexer design by combining on-wafer integration and packaging along with
micromachined waveguide-like structures into a single monolithic arrangement that exhibits very
high Q and very small size. In addition, this monolithic filter/diplexer will have the ability to
electronically achieve reconfigurable performance using MEMS devices. Such a device will
provide desired RF filtering in addition to frequency hopping and can be used in filter banks due
to very small size. While not as small as microelectrical mechanical filters [4], the proposed filter
devices will have a size of the order of a few millimeters for operation in the low end of the
microwave spectrum. This size is considerably smaller than that of any other conventional filter




of similar performance. Furthermore these filters can be integrated monolithically with the
conventional planar technology while they provide the smallest possible size along with excellent
performance for frequency ranges above 1-2 GHz. The filters proposed herein are equivalent to
lumped element filters where the Ilumped L and C is provided by appropriate use of
micromachined shapes. This is the underlining concept that leads to drastic reduction of size. To
accomplish this goal advanced electronics material technology and high-density fabrication
techniques along with electromagnetic analysis tools will be used. The development of such a
diplexer will demonstrate a key concept in advanced communications architectures and systems
and it will have a major impact on wireless technologies.

. B. SUMMARY OF
o PERFORMED STUDY

Trahin s foonneiusn

The design of a diplexer reduces to
Mass: ~2.8kg a filter design with two very
Volame: 28744 cuf narrow com-munication frequency
channels highly isolated. The study
performed during the past few
years at Michigan has
demonstrated the following [1-6]:

Power Transeutter

Yt waass” » In monolithic filter de-signs
Riarebit high-Q performance can only
be achieved by use of filters
that include either resonating
elements printed on

X-Baod Diplexer

Waveguide

High- Frequescy ﬂ
Transmission Line o
wrs % . I Side View Technology % membranes or micro-machined

waveguide reson-ant cavities
(Figure 3).
Figure 2: Conventional Waveguide RF Front-End » The use of membrane filters is
limited to high frequencies due
to the size of the resulting filter and because the achieved Q cannot exceed 500 [1,2].
Si micromachined resonator cavity filters can be integrated monolithically and can provide
filters with drastically reduced height (1-1.5mm). However, the use of resonating cavities
limits the transverse size of the filter to a minimum of half free-space wavelengths (about
1.5mm in W band, 1.5cm in X band and 5 cm in L Band) [3].
The need to acquire high Q and small size for frequencies in the low end of the microwave
spectrum, requires the use of non-resonant monolithically integrated structures.
Small size and high Q may require frequency and input match adjustments. Such adjustments,
while necessary in the case of very high-Q filters, are impossible without the use of MEMS.
The ability to electronically adjust frequency and bandwidth will provide additional filter
functionality such as tunability, switching and frequency hopping that will lead to new
architectures in communication systems.
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Based on the above observations we concluded that small size, high-Q filters or filter banks with
high isolation between the adjacent channels can be achieved by use of micromachined
evanescent-mode cavities that appropriately couple to each other and to the input/output
microstrip or coplanar waveguide transmission lines. The use of evanescent mode structures
provides small size and the ability to tune via small variations in some geometrical parameters
using MEMS structures. Studies performed at Michigan under ARO/DARPA funding have
demonstrated the potential of this filter technology to provide excellent performance and very
small size. While, high isolation between the adjacent channels is intrinsic to this filter design,




W\

further improvements can be achieved by use of the on-wafer packaging techniques, which have
demonstrated the ability to provide isolation as high as -80dB to -100 dB [4-6].

The performed study focused on the development of evanescent mode resonators and filters
using micromachined cavities in S, L and X Bands. A detailed description of the effort in each
one of these two steps 1s given below.

Evanescent-mode Micromachined Filters

Historically, the development of microwave passive networks consists mainly of finding

distributed components which can provide inductive and capacitive reactances to replace the

lumped elements employed by the filter prototype. Although distributed constant networks are

necessary for high-Q reactance elements, it is not essential that these networks be based on

structures of the conventional transmission line type. For some years now literature has been

accumulating on network designs using waveguide sections below their cut-off frequency

[17,18). Lebedev and Guttsait [18] first discovered that resonant behavior can be achieved by any

evanescent mode if appropriate terminating conditions (a conjugate reactance) for that mode are
provided.

Measurements
7 8 9 10 Il 12 13
Frequency

Pot
Figure 4: Single-Pole Micromachined Filter with Evanescent and Resonant
Cavities. Theoretically Calculated Q=569, Measured Q=530. Insertion Loss at Center
Frequency IL=.3dB, BW=5%.

Any band-pass filter can be realized from a low-pass prototype by appropriate frequency and
impedance scaling. The band-pass prototype can then be converted to a lumped clement
configuration where shunt LC resonators are connected through admittance inverters. It can be
proven that this circuit can reduce into a sequence of evanescent waveguide sections appropri-
ately connected by negative (capacitive) coupling. This negative coupling can be provided by
resonating cavities as shown in Figure 4 [17] or by capacitive obstacles as shown in Figure 5.
Preliminary results have demonstrated the ability to provide very high Q using resonant cavities
(see Figure 6). While this approach results in filters that compare to waveguide ones in terms of
performance requirements, the size of the resonating cavities may prohibit operation at lower
frequencies. Specifically for a 5%, Xband single pole filter, the size of the resonating cavity is
15mm (width) x 20mm (length) x 0.5mm (height). The same filter scaled to 2.5 GHz would
require a length of 8 cm and a width of 6 cm.




icrostrip ) )
Shorting Via

A

Coupling Slot

i

Evanescent Mode Cavity Capacitive Post
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Figure 6:Single Pole Evanescent Mode Filter

When size becomes an issue, the evanescent mode filter of Figure 5 is an appropriate solution
where by use o capacitive obstacles such as the pyramidal posts, shown in the figure, required
filter size is reduced considerably. As part of this effort we will demonstrate the use of this
approach in the development of S- and X- band tunable filters and we will evaliate the
effectiveness of the design in terms of size, Q, bandwidth and loss.

The lumped element equivalent to the inductive section (evanescent mode section) of guide is that
of a transmission line with imaginary impedance and leads to the development of effective
lumped element models. For a single pole evanescent mode filter the lumped element models are
shown in Figures 6 and 7. Empirical formulas for the capacitance and inductance of the variable
height post have been developed using quasi-static techniques and have been verified by a high-
frequency simulator, Ansoft’s HFSS. These formulas can be utilized to design an evanescent




mult-pole filter from the
\. Input Port standard low-pass designs. In
S ' addition, from these simple
formulas trends may be
developed to predict changes
in.-filter response, center
frequency and bandwidth, by
inducing small changes in
dimensions, as shown in
Figure 8. Understanding
these trends is very important
Capacitive to electronic tuning via use of
Obstacle MEMS devices

Cutput ot
- =

Coupling Slot

Evancscent AMode
Coupling Cavity Metaltized Cavity

A single pole evanescent

Figure 5: Evanescent Mode Filter with Capacitive Posts resonator has been designed

and built under to test

feasibility. The results are shown in Figure 9 and indicate that the filter structure resonates at 3
GHz and has a Q of 460. Due to the lumped element character of the evanescent mode
micromachined structure, parasitic resonances do not exist as shown by the measured and
theoretically calculated data. As shown by Figure 9, only one resonance from 0 to 20 exists.
Higher order periodic resonance are suppressed by the cutoff of the guide and the presence of the
post. Using a similar synthesis method, a 2-pole bandpass ﬁlter has been designed and sunulated
at X band. The volume of the designed the filter is 10.5 mm’ compared to a 400 mm’ 2-pole
micromachined resonant cavity filter with comparable performance. To add extra poles to an
evanescent filter, additional posts separated by evanescent cavities are need. This makes multiple
pole filters easy to fabricate since only two silicon wafers are needed to create the cavity. The
capability to fabricate these filters using IC fabrication techniques [5,6] allows for unique designs

Model of an Evanescent Section and of

Capacitive Post
11 L1
12
L2=£\i’11— w=Radial Frequency Zcavity Tanky, ..l_]
wSingYe = A=Free Space Wavelength L =-—-—w——2-
2 A=Cutoff Wavelength of The
Guide

k=Wavenumber
r=Free Snace Imnedanre (1700

K=Proportionality Constant

. b 1
Zcavity=1-—- A
T o€ el et Y =kv,’<— -1
’ Jm’-l Gpos - Ko stowal” eowal™ ) TN
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Figure 7: Empirical Formulas for Evanescent Mode Sections where Wa and Wx is the Width and
Length of the Capacitive Post




that may reduce size even further.

bt gt we wi

Resonant
Frequency Shift
Downward

Sﬂ

Frequency

Figure 8: Trends in Filter Performance Based on Varying
Geomertrical Parameters

Figure 10 indicates two possible
designs for a multipole evanescent
mode filter. Specifically, Figure 10a
shows a three-pole evanescent mode
filter with the input and output lines in a
perpendicular orientation to further
reduce size. The second design (Figure
10b) illustrates a possible arrangement
for a diplexer with high isolation
between the two output ports. This
diplexer is made out of two cavities
stacked vertically and coupled through
a slot that has a gamma shape designed
to control the coupling. This confi-
guration is expected to have very high
isolation between the two output ports

due to the high out-of-band isolation in each filter and the relative position between the two

cavities.

Fabricated 3 GHz, 20 by 17 by 2mm, Resonator
Rejection of Periodic Resonance

Measured

.. Simulated

-10 ©

-20 ©

-30 ©

20.0

Frequency 5.0 GHxz/DiV

Figure 9: Measurements vs. Theory for a Single Pole Filter




While some very fast initial successes have been achieved, the full potential of the approach has
not been explored. This further study is presently underway (funded by NSF) to understand the
impact of tuning on the evanescent modes and their implication to filter design. Furthermore, in
addition to Si, the evanescent cavities are developed using a variety of materials including
electromagnetic bandgaps.

Ca aci{ive Posts
STor x °Y

Evanescent
Mode
Sections

Microstrin

Figure 10a: Three-Pole Evanescent Mode Filter

y__/
Coupling Slot
Between the ’
Cavities  \
/A x // Upper Cavity

Lower Cavity
‘.\

Figure 10b: Diplexer Design with Multiple Cavities Including Evanescent Mode Sections and
Capacitive Posts.
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March 05 -
March 11

1:30pm

4:00pm
5:30pm
6:30pm

March 05

March 2001 April 2001
SMTWTFS SMTWTFS
123 1234567
4567 8 910 8 91011121314
11121314151617 151617181920 21
18192021222324 222324252627 28
252627 28293031 2930

Linda -Dani needs website (Japan)
Linda out of the office Japan
3:00pm Dean's Cabinet (2267 LEC)
4:00pm Assoc. Deans w/Steve (2267 LEC)
5:00pm Saeed

6:30pm Kamal, Dimitrios, Linda

7:30pm Sergio, Jongming, Clark

Steve - out of the office
8:30am 9:30am Judith Pitney - standing
9:30am 11:30am Faculty Candidates

11:00am 11:30am Multi Dept Collobration in High Peformance Sci

Computing (2210 LEC)

11:30am 12:00pm Ed Borbely - standing mtg

12:30pm 1:30pm NAME Faculty Mtg (232 NAME)
2:30pm 3:00pm Paul - standing
3:00pm 3:30pm Wayne - standing
3:30pm 4:00pm Jim Bean - standing
6:00pm 7:00pm Alex

3:00pm

3:15pm
4:00pm
5:00pm
6:00pm
7:00pm

9:30am 11:30am Faculty Candidates

Linda -Dant needs website (Japan)
Linda out until 12:00noon

5:00pm CoE Chairs Mtg (2210 LEC)
5:00pm kelly (EECS)

6:00pm Jongming

7:00pm Kok-Yan Lee

7:45pm Eray

Steve - out of the office (until 3:3:3:
8:30am 9:30am Faculty Candidates
10:00am 12:00pm APADG (MI League, Henderson)
2:00pm  3:00pm John Halloran - standing (30628 HH Dow)
4:00pm 5:00pm John W./Kyoung/Ron
5:00pm 6:00pm Pallab Bhattacharya/JPL
6:00pm 7:00pm Kostas

12:00pm
4:00pm
5:00pm
6:30pm

9:00am 11:00am Executive Committee (2267 LEC)

Wednesday, March 0

Saturday, March 10

7:30pm GOMAC-Linda to San ANtonio for this afternoon
5:00pm Parallelization

6:00pm Jim, Jack, Yonkshil, Phil

7:30pm Bili Chappeli and Matt Littie

2:30pm  3:30pm Donghoon

Sunday, March 11]

Linda Katehi

2/19/01




